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Insect wings are flexible structures that passively deform under the action of inertial and aerodynamic forces in

flight. Previous studies have focusedon the aerodynamic and energeticmerits of these deformations.Here, the effect of

torsional wing flexibility onmaneuverability is investigated bymodeling the dynamics of the wing pitchmotion when

body yaw rotation is imposed. Analyses were carried out for different nondimensional stiffness levels, characterized

by Cauchy number and body-to-wing velocity ratiosΩ∕ω. In addition, the impacts of inertial effects were evaluated

via changing mass ratio. It was demonstrated that body rotations change the balance between the aerodynamic and

elastic torque exerted about thewings’pitching axes.This results in passive variations in thewingpitch angles that are

bilaterally asymmetric and increase linearlywith the ratio of the body rotational velocity to the wing flapping velocity
�Ω. The passive changes in the bilateral pitch angles induce a torque about the body’s yaw rotation, which curtails

rotational damping effects due to the flapping motion of the wings, known as flapping counter-torque. The results

reveal that torsionally flexible wing designs could enhance maneuverability by mitigating the need for active wing

kinematic modulations during aerial maneuvers.

Nomenclature

b = wing span, m
CL = lift coefficient
CT = thrust coefficient
Ch = Cauchy number
c = wing chord, m
I = wing moment of inertia
Ib = body moment of inertia
K = reduced frequency
M = mass ratio
Re = Reynolds number
U = wing-tip velocity, m/s
ΔA = bilateral difference in half-stroke-averaged value of any

variable A
Ω = yaw velocity of the body, rad∕s
ω = flapping velocity of the wing, rad∕s

I. Introduction

E XPERIMENTAL observations and measurements have
reported flexibility of insect wings with various deformation

modes, including twisting, cambering, and spanwise bending [1–3].
Researchers have most commonly associated wing flexibility with
enhancing the aerodynamic performance. It has been shown that the
wing deformations are beneficial to improving force production
capacity [4–6] and/or power economy [7,8]. Recent investigations

have found other benefits associated with wing flexibility, such as
reduction of collision damage [9] and detection of the body angular
velocity via sensing the changes in the structural dynamics of the
wing [10]. Overall, it appears that the effect of wing flexibility on
insect flight is broader than its mere aerodynamic merits, and more
studies need to be done to unravel its contribution to other aspects of
flight.
Wings of insects are complex structures, consisting of amembrane

and a network of tabular veins [11]. For many insects, there exists a
high-torsional-flexibility region concentrated at the wing hinge
[6,11], which directly affects the passive pitching motion of the wing
during both translational phase of the flapping stroke and fast rotation
at the stroke reversal [12,13]. The network of veins across the wing
surface provides anothermeans for enhancing the torsional flexibility
of the wing, causing the wing surface to twist under the action of the
inertial and aerodynamic forces acting on it. Measurements on free-
flying insects have indicated that twisting can result in 10–30 deg
difference between the pitch angles of the wing root and that of the
wing tip [3,11,14]. Nevertheless, although twisting improves the
aerodynamic efficiency, its contribution to themagnitude of the force
is rather small [15]. Therefore, to probe how the passive deformations
of thewing affect the aerodynamics as well as the performance of the
insect flight, many computational studies modeled the combined
effect of the flexibility of wing hinge and its surface as a lumped
torsional spring located at the wing base [12,13,16–21].
Wing pitch angle and its dynamics play an important role in the

aerodynamic force generation of flapping flight. For instance, insects
flap theirwings at highpitch angles through the air. Thismotion creates
a vortex at the leading edge that remains attached to the wing,
generating large unsteady aerodynamic forces [22]. In addition, fast
wing flip at the stroke reversal enhances circulation on the wing,
providing another mechanism for aerodynamic force generation
[23,24]. Because of large sensitivity of both the magnitude and
direction of aerodynamic force to wing pitching, many insects adjust
this angle to steer and maneuver [8,17,18,25–28]. Previously, it was
assumed that the control of the wing kinematics, including the wing
pitch, is directly carried out by the flight muscles in the thorax.
However, recent studies have suggested that the interactions of the
flapping wing with its own unsteady flow should be considered when
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studying the mechanics of the wing kinematics control in insects.

For instance, investigations on the free flight of fruit flies have

indicated that the torsional flexibility of the wing hinge allows these
insects to indirectly control their wing pitch angles during aerial

maneuvers [17,18].
When an insect is in hovering or low-speed flight, themotion of the

bilateral wings is symmetric. However, any lateral motion
(translation or rotation) is usually induced by asymmetrically

varying the kinematics of the bilateral wings. Previous studies have

suggested that these changes in the wing kinematics are enforced by

an intricate chain of actions that is controlled by the insects’ nervous
system [29]. We refer to these changes as active wing kinematics

variations. When an animal (voluntarily) begins turning, active

generation of aerodynamic torque about the desired rotation axis is
inevitable. This phase of motion is referred to as the acceleration

phase, where body rotational velocity increases. However,

decelerating and stopping may not be entirely active because the

damping forces such as friction tend to inhibit the motion [30].
Particularly, a series of recent studies have suggested that the

dynamics of the deceleration phase in slow aerial yaw turns are

dominated by a passive aerodynamic torque generation mechanism:

the so-called flapping counter-torque (FCT). They suggested that the
difference in the net velocity of the bilateral wings, when the body is

in yaw rotation about an axis normal to the plane of flapping, induces

a damping torque, which acts as a breaking mechanism. This

damping torque exists even if the motion of the bilateral wings is
symmetric. For the simplified scenario where no active control is

present, the magnitude of the damping torque is proportional to the

magnitude of the body velocity, resulting in an exponential decay in

the rate of body rotation. The predictions of this model were
successfully confirmed by experimental measurements on slow yaw

turns of several species of insects and birds. Nevertheless, more

recent measurements on fast yaw turns of some agile insects such as

dragonflies and damselflies [26,31,32] show that the FCT model
alone is insufficient in explaining the dynamics of these fast aerial

maneuvers.
To better understand the dynamics of fast aerial maneuvers of

flying insects and to probe how the wing flexibility plays a role in

enhancing maneuverability, Zeyghami and Dong [26] and Zeyghami

[32] investigated the behavior of a pair of flexible flapping

wings when they undergo yaw rotation. They employed a torsional
spring at the wing’s rotation axis as a first-order model of the

wing’s torsional flexibility and a quasi-steady model to estimate

aerodynamic force and moment. They showed that the motion of the

bilateral wings passively changes in response to the body motion.
Here, we conduct a similar study in which we use an in-house high-

fidelity computational fluid dynamics (CFD) tool to calculate the

aerodynamic forces and to unravel the unsteady flow features of

maneuvering flight. Similar to the aforementioned study, we model
the wing’s torsional flexibility via a torsional spring located close to

the leading edge as a first-order approximation of the insect wing

structure. We particularly seek to answer two questions. Does body

rotation during aerial maneuvers affect the dynamics of wing pitch?

And if so, how do the changes in wing motion influence the
performance of aerial maneuvers?

II. Methods

A. Problem Definition

Here, we are interested only in the deceleration phase of the
maneuver where the active manipulation of the wing kinematics is
minimal [30,33]. Therefore, we assume that the flapping motion of
the bilateral wings is symmetric. The pitching of the wing about its
rotation axis, on the other hand, may not be symmetric because it is
dictated by the combined effect of the aerodynamic, elastic, and
inertial forces acting about the wing’s rotation axis.
When the body is in rotation about an axis normal to the plane of

flapping, in downstroke (DS), the net rotational velocity of the outer
wing increases, and that of the inner wing decreases. The opposite
occurs in upstroke (US), where the velocity of the inner wing
increases, and that of the outer wing decreases. Thus, the behavior of
the inner wing in DS is identical to that of the outer wing in US. The
same can be said about the behavior of the inner wing inUS and outer
wing in DS. Thus, to simplify the computations, we only modeled
onewing. The difference in the dynamics of the inner and outer wings
can be obtained by analyzing DS and US of the outer wing only.
Thewing ismodeled as a thin cylinder with elliptical cross section.

Figure 1 shows the schematic of the wing. Wing aspect ratio, defined
as the ratio of the major to minor axis length of the ellipse, was kept
constant. Flappingmotion is defined as rotation about the y axis of the
body-fixed coordinate system where the origin is set at the body’s
centerline 0.1c away from the wing root. The flapping profile is
sinusoidal with constant amplitude of 100 deg.
The dynamics of the passive wing pitching is governed by the

combined effect of the wing morphology, structure, wing and body
kinematics, and flow properties. It is not immediately obvious if all
these parameters have independent effects on the output.
Dimensional analysis was performed to combine the effect of
individual parameters in the form of physically relevant nondimen-
sional quantities as listed follows (detailed derivation of the
nondimensional numbers are carried out in [12]):

η � f
�
Ch;M;Re;K; �Ω

�
(1)

where η is the wing pitch angle, and Ch � �ρΦ2f2c3b2�∕G is the
nondimensional flexibility of the combined fluid–structure system
and is defined as the ratio of the fluid dynamic pressure to the
structure elastic forces. f, c, b, and Φ are the flapping frequency,
chord, span, and flapping amplitude, respectively. G is the torsional
stiffness of the spring.M � ρst∕ρc is the mass ratio, where ρ and ρs
are the fluid and solid densities, and t is the wing thickness.
Re � ρcU∕μ, where U � 2fΦb is the velocity of the wing tip.
K � fc∕U is the reduced frequency. �Ω � Ω∕ω is the normalized
body velocity, defined as the ratio of the body yaw velocity Ω and
wing flapping velocity ω � 2Φf.

Fig. 1 Schematic of the model flapping wing in yaw rotation. Yaw angular velocity of the body is oriented in the positive y direction.
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In all simulations, we kept Reynolds number constant at 500.

Cauchy number, M, and �Ω are the inputs and vary among the

simulations. For insects,M ≈ 1 [34]. For aquatic animals, this ratio is

closer to 0.1.
The output is the wing passive pitching motion as well as the

resulting aerodynamic forces and moments. The half-stroke-

averaged force coefficients are defined as follows:

CT �
�T

0.5ρb3c�ω� Ω�2 (2)

CL �
�L

0.5ρb3c�ω� Ω�2 (3)

where �T and �L are the average horizontal and vertical force in

downstroke or upstroke, respectively. The fluid force is normalized

by the net flapping velocity of the wing in the ground coordinate

system (rather than the flapping velocity in the body-fixed

coordinate). This is to separate the effect of the change in the net

velocity of thewing in altering the fluid forces. For the outerwing, the

net flapping velocity is ω� Ω in downstroke (DS) and ω −Ω in

upstroke (US).

B. Numerical Modeling

The incompressible flow is governed by the three-dimensional

Navier–Stokes equations, which can be written in tensor form as

follows:

∂ui
∂xi

� 0;
∂ui
∂t

� ∂uiuj
∂xj

� −
∂p
∂xi

� 1

Re

∂2ui
∂xixj

(4)

in which ui (i � 1; 2; 3) is the velocity components, and p is the fluid

pressure. Equation (4) is solved with a finite-difference-based

Cartesian grid immersed boundary method [35]. A second-order

central difference scheme in space is employed. Time is advanced

using a second-order-accurate fractional-step method. This method

was successfully applied in many simulations of flapping propulsion

[8,24,31,36–39]. More details about the method as well as validations

of the fluid solver can be found in our previous work [39–41].
The governing equation of the wing pitching motion is as follows:

Ixx �ωx � �Izz − Iyy�ωyωz � Ixy� _ωx − ωxωz� � Iyz�ω2
y − ω2

z�
� Ixz� _ωz − ωxωy� � Maero �Melastic �Mgravity (5)

where Ixx, Iyy, Izz, Ixy, Ixx, and Ixz are elements of the wing’s

moment of inertia matrix.Maero,Melastic, andMgravity are the torques

due to aerodynamic, elastic, and gravitational forces, respectively.
The governing equations of the fluid and the solid (the wing)

are strongly coupled via subtime step iterations, which ensure

convergence of the wing pitch angle within each time step.

C. Validation

Tovalidate our code, a flappingwingwith a torsional axis along the

spanwise direction is simulated. The passive pitching of thewing and

the flow around this wing is obtained by the aforementioned model.

The results are compared with those in Whitney andWood [13]. The

key parameters of the validation case are as follows. The geometry of

the wing model as well as its inertial properties are taken from [13].

The flapping amplitude is set to 108 deg, and the flapping frequency

is 100 Hz. The natural frequency is fn � 233.7 Hz. We compare the

simulated pitching angle of our model with that obtained byWhitney

and Wood [13] through both experiments and quasi-steady model

calculation in Fig. 2.

III. Results

A. Flexible Flapping Wing in Yaw Rotation

We start by keeping nondimensional flexibility of the wing and

the mass ratio constant at Ch � 0.2 and M � 1. When the wing

flaps through the air, it pitches about its rotation axis as a result of

the combined effects from inertia, aerodynamics, and elastic forces.

The elastic force tends to restore the orientation of the wing to its

rest orientation at η � 0, where the wing surface is normal to the

flapping direction. The fluid force, on the other hand, tends to orient

the wing with the direction of the incoming velocity, where the

surface of the wing is parallel to the flapping direction. The net

effect of the inertial forces depends on the acceleration of the wing

[11,12,18]. The solid black line in Fig. 3 shows the resulting passive

wing pitch angle. Note that the pitch angle of the wing is symmetric

in DS and US. Next, we impose body rotation and repeat the

numerical simulation. Figure 3 shows the passive pitch angle for

different normalized body velocities. Notice that the body rotation

breaks the DS–US symmetry of the wing pitch angle. This is due to

the asymmetric change in the effective Cauchy number of the wing

in DS and US (mass ratio remains unchanged). When the body

undergoes a yaw rotation, the net incoming velocity to the wing

changes, altering the balance between the aerodynamic and elastic

torque. In downstroke, the net velocity, and thus the dynamic

pressure, increases on the outer wing. The stronger fluid force

rotates the wing more toward the incoming velocity direction,

which results in decreasing pitch angle (and the geometric angle of

attack) of the wing. The opposite occurs in US, where the net

velocity, and therefore the dynamic pressure, of the wing decreases.

Weakening of the fluid dynamic pressure allows the restoring elastic

force to bring the wing orientation closer to its rest orientation

(vertical). Consequently, the wing pitch angle increases in US.

We will refer to the passive pitch-angle asymmetry as PPA.

Fig. 2 Comparison of the pitching angle among the current CFD
simulation, experimental measurement, and quasi-steady calculation [13].

Fig. 3 Time history of the passive pitch angle of the outer wingwhen the
body is in yaw rotation. Different colors represent different �Ω values.
Duration of downstroke is shaded in gray.
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Figure 4 shows the lift and thrust (nondimensionalized) for the
same wing (Ch � 0.2 andM � 1) as a function of time at �Ω � 0.2.
Similar to the pitch angle, the force generated by the wing is
asymmetric in DS and US. For reference, the force generated by the
wing at hover is shown by the solid red line. This asymmetry in the
force arises from two effects; the first effect is related to the rigid
flapping motion of the wing, and the second stems from the passive
response of a torsionally flexible flapping wing. The former effect
occurs purely due to the asymmetric change in the net incoming
velocity to a rigid flapping wing [30] (see dashed blue line in Fig. 4).
However, when a flexiblewing experiences whole-body rotation, not
only the incoming velocity to thewing changes asymmetrically inDS
and US but so does the average wing pitch angle. Thus arises the
difference in the force asymmetry generated by a flexible versus a
rigid wing, which is evident in Fig. 4. Note that the difference in the
force generated in DS and US is larger for a rigid wing when
compared to a flexible wing.
Aswasmentioned before (in Sec. II), the difference in the behavior

of the outer wing in DS and US can be interpreted as the difference in
the behavior of the inner and outer wings during whole-body
rotations. Thus, the asymmetry in DS and US behavior of the wing is
representative of the asymmetry of the bilateral wings, which can
potentially lead to generation of lateral motion. In the following
sections, the behavior of the bilateral wings during body yaw rotation
will be analyzed based on the simulation of a single wing in the same
motion.

B. Effect of Wing Flexibility

Figure 5a shows the difference in the downstroke-averaged
geometric angle of attack of the bilateral wings in degrees,
Δα � αi − αo, as a function of �Ω for different Cauchy number
values. The geometric angle of attack is the angle between the wing
surface and thewing flapping velocity (stroke plane of thewing). The
magnitude ofΔα is the same inDS andUS, but the sign is opposite. In
DS, the inner wing has a larger angle of attack, and in US, the outer
wing does. The difference in the angle of attack of the bilateral wings
increases almost linearly with increase in the body velocity for a
constant Cauchy number value. Both themagnitude ofΔα and its rate
of change with rotational velocity is larger for more flexible wings
(higher Cauchy number values). At M � 1, Δα is not a function of
Cauchy number for Ch > 0.2.
Figures 5b and 5c show ΔCL and ΔCT as a function of �Ω

for different Cauchy number values. ΔCT � CTi
− CTo

, where
subscripts i and o stand for inner and outer wing, respectively. Note
that, in the calculation of CL and CT , the force is normalized by the
net velocity of the wing [Eq. (3)]. This definition is used to separate
the effect of the PPA (passive pitch asymmetry, a flexible effect) from
that of FCT (flapping counter-torque, a rigid effect) in generating
bilateral force asymmetry. For a rigid wing, CTi

� CTo
and

CLi � CLo
because the pitch angles of the bilateral wings are

identical. However, that is not the case for a flexiblewing. Our results
show that both ΔCL and ΔCT increase with the body rotational

velocity. The variation of ΔCT with �Ω is relatively linear. Both the
magnitude of ΔCT and its rate of change with �Ω are larger for lower
Cauchy number values. The larger ΔCT values, however, are an
artifact of the higherCT values for more rigid wings. The smaller the
Cauchy number value is, the larger the relative strength of the elastic
force is compared to the fluid force. This means that the wing moves
with a larger angle of attack through the stroke plane and generates
larger thrust/drag force. If we normalize ΔCT by the average thrust
coefficient of the bilateral wings, �CT , the lines of ΔĈT � ΔCT∕ �CT

versus �Ω collapse close to each other, as shown in Fig. 5d.
Asymmetric change in the bilateral lift and thrust leads to the

generation of roll and yaw moments, respectively. The magnitude of
the net moment is proportional to the magnitude of asymmetry in the
bilateral forces. In the following section, we derive an estimation of
the net passive yaw torque generated by a pair of flexible flapping
wings, when they are engaged in a whole-body rotation. In addition,
we compare and contrast ourmodel against the one derived for a rigid
pair of wings in [30]. Although our focus is mainly on the yaw
rotation and the passive yaw torque generation in the present paper, it
is important to note that the asymmetric changes in the bilateral pitch
angles also lead to generation of a net roll moment.

C. Effect of Mass Ratio

To probe how PPA scales with inertial effects, we repeated our
simulations for a smaller M value of 0.1. This is closer to the mass
ratio observed in aquatic animals. Figure 6 shows Δα and ΔCT as a
function of �Ω. The trends are similar to what was observed for larger
mass ratio cases, but the magnitudes of the bilateral wing angle
of attack difference and bilateral force coefficient differences are
slightly larger for small mass ratio cases. This is not surprising
because, at smaller mass ratios, inertial effects are lighter, and thus
dynamics of the passive wing pitch is more dominantly governed by
the interplay between the fluid and elastic forces.

D. Effect of Passive Pitch-Angle Asymmetry on the Body Motion

To probe how PPA affects the body motion, here we calculate the
yaw torque exerted on the body due to the passive asymmetry in the
bilateral wing pitch angles. To separate the effect of the passive wing
kinematic changes from that of the body rotation only (FCT), we
make a comparison between the passive yaw torque generated by a
pair of rigid wings versus that generated by a pair of flexible wings.
When a pair of rigid flapping wings is engaged in a whole-body

rotation, their net flapping velocity changes asymmetrically. This
results in a net passive yaw torque acting on the body whose
magnitude is proportional to the rotational velocity of the body. This
counteracting torque is referred to as FCT [42]:

τr �
1

2
ρb3c �CTl

h
�ω −Ωr�2 − �ω� Ωr�2

i
(6)

where l is the distance of the center of the action of the force from the
body center ofmass.Ωr is the instantaneous yawvelocity of the body.

Fig. 4 Time history of nondimensional lift and thrust generated by the outer wing when the body is in yaw rotation of magnitude �Ω � 0.2. The force is
normalized by qbc, where q � 0.5ρU2.
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The subscript r stands for rigid. Note that, for a rigid pair of wings,
�CT � CTi

� CTo
. Equation (6) can be simplified as follows:

τr � −4AωΩr (7)

where A � �1∕2�ρb3cCTl. Equation (7) indicates that the passive

yaw torque acting on the body (connected to a pair of rigid flapping

wings) is proportional to the rotational velocity of the body, or in

other words, _Ωr ∝ Ωr. The solution to this simple ordinary

differential equation is an exponential function. Thus,

Ωr � Ω0e
�−4Aω∕Ib�t (8)

where Ib is the moment of inertia of the whole-body system about

the yaw axis of rotation, andΩ0 is the initial body yaw velocity (at the

onset of deceleration phase).
Similar to the case for rigid pair of flapping wings, the net flapping

velocities of the bilateral wings are asymmetric for a flexible pair as

well. However, for a pair of flexible wings, the thrust coefficients of

the bilateral wings are no longer identical. In downstroke, CT

increases on the inner wing, and it decreases on the outer wing.

Fig. 6 The difference in the average a) angle of attack, and b) thrust coefficient as a function of �Ω forM � 0.1.

Fig. 5 The difference in the average a) angle of attack (in degrees), b) lift coefficient, c) thrust coefficient, andd) normalized thrust coefficient as a function
of �Ω.
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The thrust coefficient of the inner and outer wing can be expressed as

CTo
� �CT − �ΔCT∕2� and CTi

� �CT � �ΔCT∕2�, where �CT is the
average thrust coefficient of the bilateral wings. Thus, the passive

yaw torque generated by a pair of flexible wings that are engaged in

whole-body rotation can be expressed as follows:

τf �
1

2
ρb3c �CTl

��
1�ΔĈT

2

�
�ω−Ωf�2 −

�
1−

ΔĈT

2

�
�ω�Ωf�2

�

(9)

where the subscript f stands for flexible, and ΔĈT � ΔCT∕ �CT , as

was defined in earlier. From the previous section, we know thatΔĈT

varies linearly with �Ω: ΔĈT � a �Ω. Thus, Eq. (9) can be rewritten as

τf � −4AωΩf � AaΩfω�1� �Ω2
f� (10)

Because �Ω2
f ≪ 1,

τf ≈ −�4 − a�AωΩf (11)

Equation (11) has a form similar to that of Eq. (7) and can be

similarly solved for Ωf:

Ωf � Ω0e
�−�4−a�Aω∕Ib�t (12)

Because a > 0, the rate of decay in the yaw velocity is always
slower for flexible wings. The body yaw velocity half-life of a

flexible pair ofwings is 4∕�4 − a� times larger than that of a rigid pair.

E. Effect of Body Motion on the Flow Structure of Torsionally
Flexible Wings

Here, we compare the flow structure of a flexible versus a rigid

flapping wing during whole-body rotation. The nondimensional

rotational velocity of the body is set at �Ω � 0.2. To isolate the effect

of the passively induced wing pitch changes, we prescribed the pitch

angle of the rigid wing as that of the flexible wing at �Ω � 0 and

Ch � 0.2. The Cauchy number for the flexible wing is set to 0.2

as well.
The three-dimensional flow structures of both the rigid and the

flexiblewing are visualized by plotting the isosurface of the maximal

imaginary part of complex eigenvalues of the velocity gradient

tensor, Λmax, as shown in Fig. 7. Two Λmax values of 40 and 25 are

visualized to show the stronger vortex core as well as the weaker

surrounding vorticity. Although themajor flow structures are similar,

differences in vortex evolution and shedding are identifiable.

Comparing Figs. 7a–7c and 7d–7f shows that, in downstroke, the

leading-edge vortex (LEV) of the rigid wing evolves relatively

slower. But more vorticity packs into it, and it eventually grows to

become a stronger coherent vortex, which remains attached to the

wing at middownstroke. In addition, on the rigid wing, less vorticity

is shed out via the tip vortex. The footprint of this is traceable in the

plot of force versus time that is shown in Fig. 4. In downstroke, the

force peak is larger for the rigid wing, and the peak value is phase-

delayed when compared to the peak downstroke force of the flexible

wing. Also, the average force generated by the rigid wing in

downstroke is larger that of the flexible wing. Note that, in DS,

the pitch angle of the outer (flexible)wing decreases (compared to the

hovering flight) due to the interplay between the fluid and elastic

forces, hence the smaller downstroke force (drag) production when

compared to the rigid wing in the same rotational flight.
In upstroke, the story is reversed. Comparing the flow structure of

the flexible and rigid flappingwings in Fig. 8 shows that the evolution

of the LEVof the flexiblewing is delayedwhen compared to the rigid

wing, and the LEV vortex of the flexible wing is stronger at

midupstroke. The footage of this is detectable in the plot of the force

versus time (Fig. 4), where the peak force (as well as the half-stroke-

averaged force) generated by the flexible wing in upstroke is larger

than that of the rigid wing, and the phase of the peak force is delayed

when compared to the rigid wing. Similar results were found in [42].

Fig. 7 Visualization of the vortex structure of a torsionally flexible wing at a) t∕T � 0.2, b) 0.3, c) 0.4, and a rigid wing at d) t∕T � 0.2, e) 0.3, and f) 0.4.
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IV. Conclusions

When flapping through the air, insect wings are subject to
aerodynamic and inertial forces that influence their motion and
deformation. Through a computational study, which combines a
high-fidelity fluid dynamics solver with a torsional spring structure
model, we investigated how the wing pitch depends upon the body
rotations. Through the present analyses, a passive mechanism has
been discovered that allows wing kinematic modulations during the
aerial maneuvers that were previously thought to be exclusively
active. The passive changes in the wing kinematics act as a
complementary mechanism that enhances wing pitch asymmetry
during the aerial maneuvers and reduces the damping of the body
rotational velocity. Furthermore, it was shown that the present results
and conclusions are valid for a large range of wing flexibilities and
inertial properties.
To generate in-flight turns, many insects adjust the pitch angle of

their bilateral wings [18]. To tune the wing kinematics, they use the
flight muscles inside the thorax. Active control of the wing motion
requires neural and mechanical feedback from the body motion as
well as feedforward motor neurons to transport the control signal to
the flight muscle [29]. Therefore, any adjustment in the wing
kinematics will cost time and energy. The present analysis indicated
that there is an alternative passive pathway by which changes in the
flight condition can affect the wing kinematics. Bypassing the active
control loop, the passive wing kinematic modulations are fast and
energetically efficient. While in rotation, PPA lessens the need for
active control. Moreover, because of the reduced damping of the
body rotational velocity, an insect with torsionally flexiblewings can
generate larger turn angles (flight heading change) employing the
same amount of initial kinetic energy. In fact, the present
experimentalmeasurements on the free-flying damselflies during fast
yaw turns (which are published in another document) show that the
new model, which includes the effect of wing flexibility, can
accurately predict both wing and body kinematics of these insects
during the deceleration phase of the maneuver [26,32]. Flapping
frequency of damselflies is only about 15–40Hz, and thus during fast
yaw turns, �Ω rises up to 0.4 [24,26]. At these large values of �Ω,
the magnitude of passive wing pitch asymmetry is in the order of

10–20 deg. For high-flapping-frequency insects, such as fruit flies

and drone flies, �Ω is only about 0.05–0.1. According to the present
model, at these values of �Ω, the magnitude of passive wing pitch
asymmetry is only about 2–5deg, which is in the same range as the
measured wing pitch angle difference during the deceleration phase
of aerial turns for these insects [18,43].
Here, the discussion was limited to the deceleration phase of the

aerial yaw maneuvers, where the active modulations in the wing

kinematics are minimal. Yet these passive changes in the wing
kinematics will also occur during the acceleration phase. In the
acceleration phase of themaneuver, body rotational velocity,which is
initially small, increases wingbeat to wingbeat due to actively
induced asymmetries in the motion of the bilateral wings [44]. The

asymmetry in the wing kinematics makes the analysis of the passive
wing pitch modulations in the acceleration phase relatively more
complicated. During this phase, the magnitude of the passive wing
pitch asymmetry is determined by the combined effect of the

increasing rotational velocity of the body and the asymmetrical
flapping velocities. Depending upon the difference in the bilateral
wings’ net velocities, PPA can either enhance or reduce the
aerodynamic torque available for accelerating the body motion.
Nevertheless, the present results suggest that the effect of wing

flexibility should be considered throughout thewhole duration of the
aerial maneuvers of flying insects.
The application of the present results is not limited to the

maneuvering flight only. Themodel also suggests that the commonly
used assumptions in the analysis of the flight stability and control of
the insects should be revisited. Currently, in stability analysis of the
insect flight, wing kinematics are assumed to remain unchanged

while the motion of the body is perturbed [5,35,45–47]. The present
results suggest that this assumption may not always be valid,
especially when the ratio of the body’s perturbed motion to the wing
flapping velocity is large, which occurs at large perturbation values
and/or small flapping frequencies.
It is believed that the present results have broad implications in

understanding insect flight dynamics, maneuverability, and wing

kinematics control. For instance, the present analysis revealed that
the motion of a flexible wing is tightly coupled with that of the body

Fig. 8 Visualization of the vortex structure of a torsionally flexible wing at a) t∕T � 0.65, b) 0.74, c) 0.8, and a rigid wing at d) t∕T � 0.65, e) 0.74,
and f) 0.8.
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via interactions between the aerodynamic and elastic forces that act
on the wing. This connection is missing from the classical model of
the insect flight dynamics in which themotion of the body affects that
of the wing only through the control signal that is generated after
processing the sensory information [29]. On another level, the
present results suggest that agile wing kinematic modulations may
not necessarily require rapid sensory information. Therefore, a higher
level of maneuverability may be achieved employing a simpler
sensory and actuation system. The outcomes of our analysis also
inform the design of micro air vehicles by unraveling the connection
between the wing design and maneuverability of the flight.
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